Advertisements

Archive for the ‘GIS / SIG’ Category

Análisis espacial de precios en el mercado inmobiliario (Ejemplo sobre Vicálvaro, Madrid)

2017/01/24

Creo que será interesante para inmobiliarias que sean capaces de georeferenciar estimaciones de precio por zonas.

El procedimiento incluye como inputs tener estimaciones de precios por bloque y precios reales (o anunciados) con lo que podemos extraer un ratio que nos diga la relación entre el precio actual y el esperado.

Recodad por favor que estos datos son aleatorios, es decir que no son más que una teoría a la espera de tener datos reales. Este primer mapa nos dice de 1 a 7 el precio esperado por bloque.

estimaciones-01

Este segundo nos dice dónde están los pisos y su precio anunciado.

estimaciones-02

El tercero nos compara y simboliza un precio con el otro. Cuánto mayor es este ratio, mejor precio teórico tiene la casa. Por ejemplo si el precio esperado es 6 pero el precio anunciado es 1, el ratio será de 6. Cuánto mayor ratio, mejor y viceversa.

estimaciones-03.png

El resultado más concreto es el siguiente:

estimaciones-04.png

Cuanto más rojo mejor, cuanto mayor es el ratio, mejor.

Este análisis permite rápidamente encontrar inmuebles de buen precio o saber decir al cliente que el precio de venta es demasiado alto en comparación con la zona donde está ubicado.

Espero que os sea útil.

Alberto

Advertisements

Visualizar mapas animados en el tiempo: Seguimiento de aves en CARTO [ENG]

2017/01/23

SuperinteresantE demo para ‘jugar’con datos reales georeferenciados desde la aplicación CARTO. Tres aves migrando desde El Norte de Europa hasta el África subsahariana.

Source: https://carto.com/learn/guides/styling/animating-maps-with-point-data

bird-tracking-20170123.pngThis guide describes how to visualize point data over time, by applying the ANIMATED aggregation style to animate your map. This feature requires a map layer containing point geometries with a timestamp, or numeric field.

  1. Select the bird_trackinglayer
  2. Click STYLE to apply styling options for the map layer
  3. Choose ANIMATED as the aggregation option
  4. Ensure the column time_date is selected

To gain better understanding from our bird tracking data, color the paths of each of the three birds separately, by using the bird_name column to style the points by value.

After animating your data, click the FILL color and select BY VALUE. Choose the column bird_name to style your markers by the birds’ names. Edit the stroke to 0, change the blending to source-over, and set the resolution to 1.

bird-tracking-20170123-02.png

You  can download the datasource here: bird_tracking

Indicateur Avancé Sanitaire IAS® – SYNDROME GRIPPAL [FR]

2017/01/23

(Cartograma creado para contribuir a la vigilancia de los síndromes gripales aportando informaciones complementarias a las de la Red ‘Centinelas’ [FR])

L’objectif de l’Indicateur Avancé Sanitaire (IAS®) “Syndrome Grippal” est de contribuer à la surveillance des syndromes grippaux en France en apportant des informations complémentaires à celles du réseau Sentinelles. Cet indicateur a été validé par comparaison avec les données du réseau Sentinelles. Au niveau national, La corrélation croisée avec le réseau Sentinelle est forte (0,88). Cette corrélation valide la pertinence de l’IAS®. L’IAS® est calculé chaque jour en employant une méthode de lissage temporel : les informations des sept jours précédents et des 7 jours suivants sont prises en compte pour calculer la valeur d’un jour donné. Ceci fait que l’indice d’un jour J peut légèrement évoluer jusqu’à J+7.

IAS® Syndrome Grippal : le dernier cartogramme quotidien en haute définition

Openhealth_S-Grippal_DernierCartogramme.jpg

Données issues des sorties consommateurs des officines du réseau CELTIPHARM.

Plus d’infos sur nos méthodes: http://ias.openhealth.fr/methode

http://ias.openhealth.fr/

Les données sont mises à jour quotidiennement. Adopter le J+1 !

source: http://www.data.gouv.fr/fr/datasets/indicateur-avance-sanitaire-ias-syndrome-grippal/

Homicidio doloso en Ciudad de México 2013-2015

2016/11/02

Recibí este link por Facebook hace un rato (Gracias Paco!)… https://hoyodecrimen.com/mapa#/19.4052/-99.0987/12 y me dediqué unos minutos a analizar un hecho puntual, el homicidio doloso, en un periodo concreto de tiempo, de 2013 a 2015. Veamos la previsualización de todos los homicidios ocurridos en 2013 en CARTO.

El autor de la página llamada CRIMEN POR TU RUMBO donde están volcados estos datos es Diego Valle. Desde luego el planteamiento es interesante e inquietante. Quién quisiera saber los crímenes que se han cometido por la zona por donde me voy a mover. Yo?. Yo no, desde luego porque no saldría pero en términos de análisis es sin duda muy, muy interesante.

density-map-mexico-20161102-02-05.jpg

Los datos de incidencia delictiva vienen de una solicitud de información a la SSPDF. El mapa de cuadrantes es de Consulta de Cuadrantes. La población está basada en información del censo 2010 por Manzana.

Mi aproximación era mostrar más que un mapa estático con datos puntuales, un mapa dinámico, que permitiera ver una evolución global de cada uno de los acontecimientos estudiados.Esto son todos los datos en bruto, todos los crímenes

all-crimes-mexico-city-20161102.jpg

Todos los crímenes desglosados. De todos ellos se podría intentar sacar un patrón espacial. Dónde se roba más a los negocios? a los transeúntes, a los taxis? dónde son más comúnes las violaciones? Cuál es la evolución en el tiempo? Tiende a ocurrir más al Norte o más al Oeste? Va la cosa a mejor o a peor?.

density-map-mexico-20161102-02-04.jpg

El resultado preliminar es el siguiente:

density-map-mexico-20161102-02-03.jpgdensity-map-mexico-20161102-02-03d.jpg

Claramente la tendencia es a aumentar y a descentralizarse, veamos a través del maravilloso Carto (ex CartoDB).

Software utilizado: ArcGIS 10.3 + Geostatistical analyst
Global Mapper 17.2 +density maps
Free Video Capture 7.8.3

Algún otro enfoque que os resultaría interesante? No tenéis más que proponerlo.

Un saludo cordial,

Alberto CONCEJAL
MSc GIS

Euclidean allocation analysis II

2016/10/28

Imagine you need to promote recycling. Imagine you have 1000 inhabitants from a small village and you need to provide proper colored plastic bags for each and every one of the categories you need to disaggregate: organic, plastic and paper.

You need to service them all properly but you can only choose 5 shops (out of the 10 available)  where you will distribute the bags for free.

In green all 1000 inhabitants (houses) and in orange the placement of all ten shops.

allocation03-combo.jpg

In green the final result: the 5 shops chosen out of the 10 potential available due to having checked they are the most optimal (the shortest euclidean distance).

allocation03-combo02.jpg

Software used:

ArcGIS 10.3
ET Geowizards 11.3

Hope you guys liked it,
Alberto

Allocation analysis: Attaching customers to facilities

2016/09/20

Allocates a set of demand points (Customers) to user specified number of supply points (Facilities) out of a Facilities point dataset based on the Euclidian distance between the Customers and Facilities.

customers

100 customers anywhere in the World

In other words the function selects N Facilities out of K candidates to service a set of M Customer locations in such a way that each Customer is allocated to a single Facility (based on Euclidean distance) and the total distance between the Customers and selected Facilities is minimized.

asignation

Customers attached to 3 pre-defined facilities

In a more simple way: take a bunch of customers and assign them the closest facility (using euclidean distance, the “ordinary” (i.e. straight-line) distance between two points)). In this particular theoretical analysis I have also selected a maximum range of 5000 meters so anything beyond won’t be taken into consideration.

Questions:  Am i giving a proper service with those facilities i have already deployed?. Is there any of them way too far away so we cannot service at all?. Is there any of them over populated and in the end we cannot provide a proper service?. If you happen to come across any other question, please add it to comments so i can modify the post.

Result table:

FID Shape Id FacilityID Facility Type Num_Alloc Max_Dist Total_Dist
0 Point 0 2 2 Selected 4 4852.68 15362.93
1 Point 0 1 1 Selected 11 4110.57 37839.93
2 Point 0 0 0 Selected 18 4991.27 73591.27

This ArcGIS video shows some light over these type of analysis:

This links shows how to create a network dataset
http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/exercise-1-creating-a-network-dataset.htm

 

Software used: ArcGIS 10.3; ET Geowizards 11.1

Hope you guys have liked it, if so, share or let me know about it.

Alberto CONCEJAL
Geographer and MSc GIS

Running en Nantes

2016/09/13

Cada vez que corría por esta maravillosa ciudad, lo grababa con la aplicación Runkeeper, así que he superpuesto todas las ocasiones para ver dónde exactamente se concentran las rutas que más he usado y las zonas por las que he pasado más veces. Esto es lo mal de concentrar en la misma persona alguien al que le gusta correr, apuntar cosas, visualizarlas, analizarlas…

Creo que hacer tracking de rutas, tiempos, ritmos, etc, me ayuda a enfocar lo importante que es para mí la regularidad y la constancia. No es correr en sí lo que me gusta, que sí, sino demostrarme que soy capaz de hacer algo que me entretiene, me relaja, de forma periódica y con contadísimas excepciones (lo único que me deja en casa es una lesión o un cabreo).

running-nantes

Y se ve claramente en rojo cuáles son esas zonas!!! He exportado las líneas a puntos y he creado un mapa de densidad en Global Mapper 17, al que he superpuesto un layer de Open Street Maps.

running-nantes-02

Cómo echo de menos correr por el Loira, sus parques, sus puentes, sus riachuelos… ahora corro en Madrid y también me gusta mucho pero me trae muy buenos recuerdos puesto que fue allí donde empecé a hacerlo en serio.

running

Bueno en serio quiero decir, a hacerlo siempre.

Réalisation du carte de densité pour vérifier Localisation des colonnes aériennes de Nantes Métropole

2016/09/12

Localisation et caractéristiques des colonnes d’apport volontaire aériennes de Nantes Métropole utilisées pour la collecte des déchets.

  1. Outil de visualisation Global Mapper 17
  2. Format SHP
  3. champ: VOLUME

http://data.paysdelaloire.fr/donnees/detail/localisation-des-colonnes-aeriennes-de-nantes-metropole/

colonnes-airiennes-01
Ces colonnes sont implantées sur l’ensemble du territoire et sont destinées à la collecte du verre et des emballages recyclables (papier, carton, plastique).

colonnes-airiennes-02

C’est genial jouer un peu avec des données Open Data, j’espère que vous avez aimé.

Alberto
MSc SIG et remote sensing

Entrevista en ‘Soy Data’

2016/08/30

Me vinieron a entrevistar de SOYDATA.net  para hablar de temas relacionados con la Geovisualización como el Big Data o el Open Data y su implicación con el Control de Calidad o el Software libre. Gracias a Jorge Ubero de SoyData por la misma.

Espero que os guste, ya sabéis que si tenéis algún comentario o algo que decir, estoy encantado de contestaros.

Alberto

Alberto Concejal: Nuevos retos en geovisualización

Para hacer un repaso de algunos de los retos y nuevas aplicaciones que nos estamos encontrando en este sector, hemos entrevistado a un veterano experto en geomática, Alberto Concejal.

Alberto Concejal:

Geógrafo, master en teledetección y GIS (sistemas de información geográfica). Ha trabajado más de 15 años en el sector geoespacial. Comenzó su carrera como fotógrafo aéreo y a lo largo de estos años se ha venido especializando en compaginar diseño y geovisualización. Al mismo tiempo ha desarrollado una carrera paralela como fotógrafo y viajero, sus grandes pasiones (ver ‘Un viajero de colores‘ en el portal viajeros.com)

alberto-fotografo-aereo

En la actualidad trabaja como responsable de control de calidad en una multinacional cartográfica. Alberto hace cada día que los procesos complejos sean más fáciles de comprender.

Podcast geotecnologías y nuevos retos

“Las adaptaciones necesarias para que una fusión de dos empresas se lleve a cabo, es todo un reto desde el punto de vista del ‘Quality assessment’”

“No podemos contemplar el escenario actual con los sistemas anteriores, por la capacidad y la realidad dinámica que hay ahora en la generación de datos geolocalizados”

“El open data es el marco idóneo para poder hacer avanzar la tecnología en el entorno big data actual”

“La nube es algo reciente, aún nos estamos adaptando. Es una parte del todo”

“Hay un escenario nuevo cada cinco años, que debe ser aceptado dinámicamente”

“El cliente se ha trasladado de empresas u organismos a las personas de a pie. Siendo éstos a su vez generadores de datos, que deben ser validados y tenidos en cuenta”

Nuevas aplicaciones en geotecnologías: Carto y Tableau

Con Carto (anteriormente conocida como CartoDB) y Tableau se ha facilitado enormemente el acceso a las geotecnologías. En la sencillez reside una de las principales claves de su éxito

–> En la Academia SoyData tenéis a vuestra disposición cursos para poder poneros al día en estas herramientas de geovisualización de una manera ágil, sencilla y asequible.

–> En el blog geovisualization.net Alberto detalla algunas claves y casos de estudio que serán sin duda de vuestro interés. Os invitamos a todos a que lo visitéis.

Visualizing Tweets!

2016/03/04

How about a quick visualization of tweets in CartoDB?

Hey guys, the way we used to visualize is changing on a  daily basis so it’s time to catch up!!!. Let’s add a timestamp and play!!

tweets-visualization-cartoDB-20160304

We will take a look at this dataset in depth shortly so be aware of our schedule!

Regards,

Alberto CONCEJAL
MSc GIS and remote sensing